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Numerical calculation of transient excitonic Green functions 
in the presence of phonon scattering 

Tadashi Takemori, Yoshikazu Mommurat and Masahiro Inoue 
Institute of Applied Physics, University of Tsukuba, Tsuknba, Ibarald 305, Japan 

Received 11 October 1994, in final form 13 February 1995 

Abstnd. As a demonshiion of the growing feasibility of quantum treatment of complex 
systems with parallel computing, we have performed a transient population dynamics calcubiion 
for carriers interacting via Coulomb and elecuon-phonon interactions. Two-point Keldysh 
fundions are obtained by integrating the Dyson equation in the time domain. Keldysh functions 
are mated explicitly as maeics with discretized red time as their index in order to be able 
to deal squarely with fast transient phenomena. The Coulomb ineraction is included in the 
eiecmn self-energy within the H-Fock approximation, while the interaction with localized 
nondispersive thermal phonons is taken into account up to the second order in the electron- 
phonon vertex. The numerical procedure is applied to the w e  of d e r  excitation by an 
ulbashod laser pulse in a model two-band semiconductor to obtain the transient behaviour of 
carrier population and the luminescence specmum shady after the excitation. 

1. Introduction 

The development in the laser technique involving ultrashort pulses has pushed the 
experimental time resolution down to femtoseconds, and an observation of very fast transient 
processes has now become feasible. The technique has recently been applied to probe the 
behaviour of the electronic system in semiconductors both in the bulk and in nanostructures 
(see e.g. Schmitt-Rink et a1 1985, Chemla et al 1987, Knox et al 1985, Wake et a1 1992, 
Yoon et a1 1992, Rota et a1 1993). If the recombination rate is slow, the electxons and 
holes created at a high energy by the laser pulse lose energy first via LO phonon emission. 
Coulomb scamring between carriers also assists in the rapid thermalization when the density 
of the excited carriers is high (Rota et a1 1993, El S a y 4  et a1 1994). This initial stage 
of thermalization takes place typically within a fraction of a picosecond. Afkr the caniers 
have been scattered into states of small momentum. the interaction with acoustic phonons 
becomes important in the energy exchange with the environment. The carrier distribution 
then moves towards the thermal equilibrium, which is a slower process taking typically tells 
to hundreds of picoseconds (Inoue and Hanamura 1976a). 

Based on the Hartree-Fock approximation to the self-energy in the Keldysh Green 
function scheme, Glutsch and Z i e r m a n n  (1992) recently calculated the transient 
behaviour of excitons shortly after the pump laser is turned on. The result revealed a 
highly non-linear behaviour of canier population as a function of time, laser frequency, laser 
intensity and the smoothness of the onset of the laser beam. In particular, the population 
was shown to vary rapidly with time, and a aansition to an excitonic phase was predicted at 
laser frequencies above the exciton level if the laser intensity is sufficiently low depending 
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on the smoothness of the laser onset. The population dynamics, however, did not include the 
energy exchange with phonons. As the Coulomb interaction is instantaneous, the equation 
of motion took on the form of the Heisenberg equation for each point in the momentum 
space so that each electron had to conserve its momentum. 

Concerning the electron-phonon scattering, on the other hand, it was once customary to 
make a Markovian approximation and recast the problem in the form of a classical master 
equation (see e.g. Inoue and Hanamura 1976a). Although such a semi-classical approach 
has been applied to the analysis of fast transient processes (Kuhn and Rossi 1992, Rota 
ef ai 1993). it has its limitations. It is unclear, for example, how the uncertainty relation 
between time and energy should be incorporated. The non-equilibrium Green function 
method, on the other hand, allows the fully quantum mechanical incorporation of electron- 
phonon interaction into the population dynamics (see e.g. Haug and Koch 1990). Based on 
the generalized Kadanoff-Baym amutz to express the time-ordered propagators in terms of 
the density matrix and the retarded Green functions, a self-consistent theory is obtained by 
assuming an exponential behaviour in time with a complex frequency for the retarded Green 
functions (Wigner-Weisskopf approximation), and then by determining the frequency to be 
consistent with the second-order self-energy. Tran Thoai and Haug (1993) used this scheme 
to obtain the transient behaviour of carriers under the influence of both excitonic interaction 
(Hartree-Fock exchange term) and electron-phonon interaction shortly after being excited 
by an ultrashort laser pulse. Their calculation and a subsequent work by Schilp ef a1 
(1994) using a density matrix formulation revealed a quantum beat of polarization with 
phonon frequency which was absent in a Markovian treatment and which was enhanced by 
the excitonic effect. While the Wigner-Weisskopf approximation in conjunction with the 
Kadanoff-Baym a m m  is valid when the rate of change of population and polarization is 
slow compared to the emission rate of phonons, it cannot be justified on general grounds in 
the case of fast transient phenomena where the population and polarization vary within the 
decay time of the retarded Green functions, thus influencing the time development of these 
functions. 

In this paper, we present a quantum mechanical calculation of the transient population 
dynamics for carrier excitation in a two-band model, where the Coulomb interaction is 
treated in the Hartre-Fock approximation, the electron-phonon interaction is treated up 
to the second order in the interaction vertex, and where the two-point Keldysh function 
of electrons is calculated numerically as a matrix with discretized real time as its index 
without making any further assumptions as to their temporal behaviour. Such a treatment of 
population dynamics would have overwhelmed the computational capacity of a conventional 
machine. With the recent development of massively parallel computing, however, a full 
trwtment of such problem on a quantum mechanical basis is becoming feasible. The 
present work is one such attempt. A very similar treatment of two-point Keldysh functions 
fully as a matrix in the time domain has been made also by Hartmann and Schger (1992) 
although without the Coulomb interaction. The present calculation may be regarded as the 
extension of their work to include the mean-field H&ee-Fock exchange term. The size 
of the calculation is also much larger: the number of k-points is more than doubled, and 
the number of time steps within the memory depth is nearly 5.6 times as many. A small 
time step and fine mesh in k-space are necessary to deal with the persistent oscillation of 
population and polarization caused by the Coulomb exchange term. 
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2. Preliminaries-formulation in the Keldysh scheme 

2.1. Model 

Denoting the electron and phonon operators by C? and b, we take the model Hamiltonian as 
follows: 

The first term is the unperturbed dispersion of the conduction band (a = 1) and the 
valence band (or = 2). The electron spin is neglected for the sake of simplicity. (Under 
qualifications, what follows may be regarded as dealing only with singlet excitons.) The 
second term is the phonon energy. The third term describes in the so-called 'rotating wave 
approximation', the interaction of electrons with a classical pump field whose frequency is 
centred around op and whose envelope function is given by E@) .  The fourth term is the 
Coulomb interaction between carriers in a semiconductor, where an unscreened form 

~ ( 4 )  = 4nez /q2  (2) 

is assumed with a background dielecmc constant E. Hereafter, we shall assume that the 
effect of Hamee potential together with that of the charge compensating positive background 
is included in the one-particle energy Eu(k). The last term is the electron-phonon interaction. 
In our calculation where a quantitative comparison with experiment is still out of the 
question, we shall satisfy ourselves with a separable form 

l ~ ~ ( k i , k z ) I ~  = g(ki)g(kz) (3) 

instead of the usual Frohihlich-type interaction 

which is more appropriate for U) phonons. A separable form greatly reduces the computation 
load. We shall drop the dependence of y,(kl, k2) on a for the sake of simplicity. We shall 
also assume a simple functional form 

(5) 

which is smoothly cut off at large values of [kl. In a realistic simulation of a material, the 
cut-off momentum k, (in fact the functional form of y.(kl, k2)) will have to be determined 
from the knowledge of the dependence of the matrix element on k in the momentum space. 
In the absence of such a knowledge, and also considering the qualitative nature of the present 
calculation, we have chosen k, to be 7.5 times the inverse Bohr radius of an exciton. 

g(k)  = goexp (- (k /kc ) z ]  

Both bands are taken Io be parabolic with masses me and mh; 



4632 T Takemori et al 

where Eg is the band gap which is assumed to be large compared to the temperature, 
exciton binding energy or the reciprocal of the time scale of population dynamics. In 
accordance with this idea of a hierarchy of energy scales, we have excluded interband 
transition terms from all but the third term in the Hamiltonian (1). As a result, the problem 
can be reformulated in such a way that Eg or op (which is close to E,.) never appear 
explicitly in the theory. This is done by defining new electron operators 

with a new Hamiltonian 

which describes a system of a reduced band gap illuminated by the pump field whose central 
frequency is zero. We shall hereafter work with this reduced Hamiltonian (IO). 

. 
c2 

t c3 
I to-ifi 

Figure 1. Integration paIh in the complex time domain. 
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2.2. Kekfysh functions 

Let us now briefly summarize the method of non-equilibrium Green functions (Keldysh 
1965) bearing in mind the simplifications that arise in the present case of a transient carrier 
excitation (SchSer and Treusch 1986, SchSer 1987, Haug 1987, Schmitt--Rink and Chemla 
1986, Schmitt-Rink et nl 1988) in an intrinsic semiconductor whose band gap is large 
compared to the temperahye. The Keldysh Green function is defined as the expectation 
value of a 'time-ordered' product of operators 

(11) 

whose ordering is defined along a contour C on the complex time plane as shown in 
figure 1. The path starts from the initial time to when the system is considered to be in 
thermal equilibrium. then proceeds along the real axis to a time fmar larger than any external 
time variable of the n-point function to be calculated (CI of figure 1). then returns to the 
initial time to (CZ of figure I), and then proceeds in the direction of the negative imaginary 
time (C3 of figure I), ending up at the time to - is. To indicate a position on the contour 
C, we shall use a variable r which is taken to increase along the length of the path C. A 
variable t shall be used to indicate the time coordinate of the point specified by the variable 
r (e.g. symbols t ,  t', tl and tz shall indicate the time coordinate of points r ,  t', 51 and rz). 
Thus, t increases with r (dt = dr)  on C1, while r decreases with t (dr = -dr) on C2 
and t ( r )  - to is pure imaginary (dt = -idt) when t indicates a point on C3. Taking the 
free-particle part (the first two terms in (8)) as the unperturbed Hamiltonian 

" 
G ( ~ I ,  r7.3.. ., rn) = (TcOI(~I)OZ(Q). . . On(&)) 

and denoting by Hint the remaining terms of the Hamiltonian in the interaction representation 

where 

The integration along C3 ensures that the system is in thermal equilibrium at to under the 
interaction Hamiltonian. Fortunately for the present model with a large E,, this piece of 
integration can be omitted, since the external field is switched on only &er to, and also 
because the equilibrium state of HO without any carriers and with thermal phonons is already 
the equilibrium state of HO + Hiot at to. The integration will therefore be along CI and Cz 
only. Defining the multiplication of two (infinitdimensional) mahices with time and band 
indices A , y ( r ~ ,  t 3 )  and Ey,p(r3.  tz) as 
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where 

the electron self-energy is defined as 

where 

is the Green function of the frmparticle Hamiltonian Ho. Multiplying (18) by G from the 
right or from the left, one obtains 
i-GG,,&71,n) d = ~ . ( k ) G , ~ ( k , n , 5 ~ ) + C S C . , ~ ( k . 5 1 . g ) G , ~ ( k , 7 3 , r ~ )  dt3 

dti Y E  

+ - rz)S,,p (20) 
d 

i-GG.,&5i, 9) = -q(k)G.,,dk TI, 72) - C J G . , , ( ~ . ~ ~ , ~ ~ ) E , , B ( ~ , Y ,  52) dt3 
dtz Y C  

- iS(q - r2)Su,p. (21) 
This can be regarded as the equation of motion for G provided the self-energy E is given 
as an explicit functional of G. 

The integration over t3 in (16). (20) and (21) need not be taken from to to tmar but 
only up to whichever is larger of t(rl) and t ( q ) .  This is so because the integrations over 
73 along the pieces of CI and C2 where t3 max(t(?~),  t(rz)] exactly cancel each other, 
since dhlc, = -dblc, and G,,(k, 51, 73). G,& r3. n). &,W, ri. 53) and E,&. 73, n) 
depend only on t(53) irrespective of whether 53 is on CI or CZ. This last fact follows 
directly from the definition of G.& 51, 53) and E,fi(k, 51, 53). By recursively applying 
the argument, one concludes that the same holds hue, however complicated the diagram; 
i.e. that in integrating over the position of an intermediate vertex along the contour C, the 
time variable need not be taken beyond the largest of the external time variables of the 
n-point function. The consequence of this is that, whatever diagrammatic representation 
one assumes for E, the time evolution of G&, 51, 52) can be calculated solely from the 
knowledge of G,& r3, y )  with max(t(r3). t(z4)I < max{t(r~) .  t (52)) .  

2.3. Self energy 

An approximation to as a functional of G is obtained if one notices that the usual 
diagrammatic rules for T products also apply here (Lifshitz and Pitaevskii 1981, Rammer 
and Smith 1986). so that the self-energy is identified with the set of one-electron-irreducible 
diagrams. If we take the Hartree-Fock exchange diagram for Coulomb interaction and the 
second-order diagram for eleccron-phonon interaction as shown in figure 2, the self-energy 
is given by 
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where D is the Green function for phonons, 

D(q,  ~ I P  Q )  = (T ,~q(r1)~-9(~2))  (23) 

(24) U&) = b,(r) +b-,(s). t 
The equilibrium valence electron contribution is subtracted from the exchange energy term 
in (22), since such a contribution can be included in the renormalied band energy E&). 

On the other hand, the phonon term is left as it is, so that the band energy renormalization 
due to electron-phonon interaction has to be taken into account in interpreting the numerical 
results. 

Figure X Selfenergy diagrams. 

As pointed out by El Sayed et a1 (1994), the use of parabolic bands in combination 
with bare Coulomb interaction (2) leads to an ill defined exchange term because of the 
contribution from large values of Ikl. In the present calculation, this manifests itself in the 
dependence of the solution on the cut-off momentum in the k-space integration. Here again, 
the k-space integration cannot be unlimited in reality, and has to be cut off somewhere. We 
have done this by introducing the same smooth cut-off factor 

(25) V(k - t) + V(k - k’)exp I- (klk,)’} exp { - (k’/k.)’] 

as for the phonon vertex. 
A similar set of equations may be set up for D to be solved simultaneously with the 

equations for G. Instead, we shall here assume, for the sake of simplicity, the unperturbed 
thermal phonons 

D(q,  rl. 52)  = nT {exp[-io,(tl - tz)l+ exp[io,(tl - t d l )  + - rz)exp[-io,(t~ - t2)1 

+e(rz - ?)exp[iw,Pl - rdl (26) 
where nT is the Bose distribution function 

This approximation to D is well justified for &er excitation in a semiconductor where 
the LO phonons are not expected to be affected strongly by the population of carriers. 
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2.4. Luminescence and absorption 

Let us give an expression of luminescence intensity in terms of the electron Green functions 
when the radiative recombination rate is small. For each mode of radiation of frequency w, 
we shall assume a Hamiltonian 

where a, is the photon operator, 

(29) 
is the polarization, the momentum of the radiation is neglected compared to the crystal 
momentum, the electronic transition associated with photon emissionlabsorption is assumed 
to be local, and the rotating wave approximation is used again. If this is included in the 
Hamiltonian of the system, the photon number at time T is given by 

pk(t) C],,cZ.k t 

where S, now includes Hd in its time evolution 

and 

The trace has to be taken over states with no photons in accordance with the assumption of 
a large Es. and the contour C should run only up to time T and return. Expanding 4, to 
the first order in Hium and making contraction of the photon operators according to 

for a single mode of radiation with frequency w. In reality, any observation is of finite 
energy resolution, so that a more relevant quantity will be the number of photons within a 
certain range 8, of a frequency w,. A convenient candidate would then be 
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One has to be careful in interpreting this quantity in relation to the experimentally observed 
transient spectrum intensity (Eberly and Wodkiewitz 1977, Khknyakov and Rebane 1978)t. 
Tlre formula (36) corresponds to what is called the ‘PageLampard’ power spectrum 
and does not correspond to a physical readout of most frequency-resolved experiments. 
It can even become temporarily negative as a result of the uncertainty principle. An 
expression corresponding to experimental result will have to be based on the analysis of the 
experimental set-up. Broadly speaking, however, an experimental readout may be regarded 
as an average of (36) over a period 1/26, with a damping factor 23,. This can be seen as 
follows: if the experiment is such that a detector monitors the photon field intensity behind 
a Lorena filter of frequency resolution S,,, the readout at time T will be proportional to 
the intensity of the photon field at the detector at time T. The amplihlde of the field is the 
accumulation over time t (< T) of photon field amplitude before the filter multiplied by 
the filter response function exp(io,(T - t)]exp(-6,IT - t l ] .  The readout at time T will 
then be proportional to 

i.e. the accumulation of R(r)  over time up to T with a damping constant 2s,. 

with the mean-field approximation, we shall use the substitution 
An approximation has to be made to the four-point function in the integrand. In line 

(TcP,,(z’) t .  Px(r)) (TC,,,f7)c~,~(s)cz,,(7’)c~,~(~’)) t t 

--f ( T C ~ . , ( r ) C i , v ( ~ ’ ) ) ( ~ C z , t ( s ) C ~ , r ( 7 ’ ) )  t 

+ (zc~,(s)cz,r(~)) (TCZ,, t (T9Cl .V (7% 

= - G i i ( k , ~ ’ , t ) G ~ ~ ( k , 7 , 7 ’ ) 6 ~ , ~  + Gzl(k.7.7 +O)Glz (k ’ , r ’ ,~ ’+O) .  (40) 

The second term on the RHS corresponds to the emission that is coherent with the pump light, 
whose interference with the pump light should also account for the pump light absorption. 
The first term, on the other hand, corresponds to the incoherent emission that is proportional 
to the product of quasielectron and quasihole density in the k space. The delta function 6k.v 
derives from the long-wavelength l i t  of radiation, and should in reality have a resolution 
of the order of the radiation momentum. The appearance of this delta function is also a 
sign of the incoherent nature of the first term. In the light of the different nature of the two 
terms, we shall hereafter treat them separately. 

t The authors are indebted to one of the anonymous referees for pointing out the non-trivial relationship between 
the photon nwober spectrum and ule experimental measurement of the transient spectrum 
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The expression for the absorption rate can be obtained in a similar fashion, this time 
starting at to with states with one photon of frequency o and taking a trace over no photon 
states at time T. The probability that the photon has been absorbed by the time T is then 
given by 

where Trl[] denotes the trace over one-photon states at time to, and PO is the projection 
onto no photon states. Expanding again to the lowest order in [VI, one may thus be tempted 
to define the rate of absorption as 

1 xexp(-io,(t’-r)]exp(-6,,lr‘-tl]dr’ 

x exp [ -io&‘ - t ) ]  exp (-8& - tl} dr’ 

x exp [-6,lt’ - rl}  dr’ (42) 

after averaging over a frequency range around o, with a Lorentzian of width SE, as in (36). 
The interpretation of (42) in terms of experimental ObSeNatiOn is even more complicated 
than for luminescence. If we consider the readout of a detector behind a filter as before, 
and suppose that the system is exposed to incoherent diffuse white light of intensity IO 
independent of fieequency, the detector readout at time t will be larger (by an amount 8 l ( t )  
proportional to IO) compared to the case without the incoherent diffuse background. A 
tentative definition of the transient absorption spectrum would be 

In the case of a Lorentzian filter, the same argument as for the luminescence leads to the 
expression for transient absorption 

to the lowest order of q. 
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2.5. Numerical implemenfarion 

Let us briefly comment on the actual implementation of the numerical procedure on the 
parallel computer APlOOO which consists of a host processing unit and up to 1024 cell 
processing units. The time evolution of G solved by discretizing the time variable and by 
integrating the equations of motion (20) and (21) according to the second-order Runge- 
Kutta scheme. The table of G.fl(k, ?I, rz) with rl, rz on the path C1 of figure 1 has to be 
stored and its time evolution solved for each Ikl. Denoting by u1 and uz the points on CZ 
that correspond to the same value off as rl and TZ respectively, the Keldysh functions with 
either of the r variables on C, are obtained by the relation 

The momentum space is divided into shells according to the amplitude Ikl, and each cell 
processing unit is assigned a shell for which to perform the task. The self-energy is compiled 
by the host processing unit at each step of  integration from the data sent from the cells, and 
is then fed to cells for the next step of integration. We have tried running the program with 
1024, 512, 256, 128, and 64 cells, but 128 cells proved to be the most practical choice for 
the present calculation with regard to accuracy and the computation time. The results in the 
next section are obtained with 128 cells. 

Another point concerning the practicability of the calculation is the integration cut-off. 
As regards the integration in the momentum space when calculating the self-energy, we 
have employed a Gaussian cut-off not only in the separable form of the electron-phonon 
vertex but also for the each end of  the Coulomb vertex. The cut-off momentum k, is taken 
in a region where electrodhole population and polarization are small (see figures 3, 5, and 
6).  A Gaussian cut-off is employed also in the time domain for the phonon function 

~ ~ ( 4 ,  r, 5') = ~ ( q .  r ,  5') exp { - [sD(r' - t ) ) ~ ' }  (46) 

which may be regarded as giving a width 6~ to the phonon band. This ensures that the 
self energy C,,p(k, z', 5 )  also diminishes with It' - fl within the time scale I/&, thereby 
rendering the time integration in (20) and (21) convergent. The equation of motion can then 
be solved far into the future without retaining all the G.&, q ,  rz) since to. 

3. Numerical resuits 

Let us now present the numerical results. We have used material parameters that correspond 
to the hulk GaAs as listed in table 1. Hereafter, we shall employ the units such that the 
energy is in (Ryd")-' (the exciton binding energy), time is in 1 f.Rydcx)-', and the length is 
in a2 (the exciton Bohr radius). The canier masses are then me/h2 = 1.14 (Ryde")-1(a2)-2 
and m& = 8.14 (Rydex)-1(ag)-2. The LO phonon energy listed in table 1 is 8.27 (Rydu) 
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and the phonon band width SD is taken to be a tenth of oq. The pump laser pulse is assumed 
to be of the form 

We present the results for WO = 0.02 (Rydc") and WO = 0.20 (Ryd"). Estimating 
the interband transition matrix element by IM1* = moEg/6 (Stern 1963). one obtains 
p N O . O ~ ( U ~ ) ' ) Z / ~  (Ryd")1'2. Then the amplitude WO = 0.02 (Ryd") can be attained 
by focusing a laser pulse of 50 MW peak power on an area of 1 "z. 

Table 1. Parameters for GaAs. 

Parameter Value 

band gap (4) 1.428 eV 
elecVOn effective mass (me) 0.063mo 
hole effective mass (mb) 0.450mo 
LO phonon frequency (oq) 36.4 meV 
exciton binding energy (cRydCx)-') 4.4 meV 
excimn Bohr radius (np) 12.5 nm 
time unit (1 (RvdCV1) 149.6 fs 

Figure 3 shows the time development of electron and hole population excited by a 
laser pulse of amplitude WO = 0.02 (Rydex), bandwidth S, = 1.0 (Ryd-), and central 
frequency Am, = Eg + 24 (Rydex). The electron-phonon coupling strength is taken to 
be y(0,O) = 5.0 x (Rydea). The ordinate is the carrier density in the k space, 
so that after multiplying by the density of states and integrating over k, the total carrier 
number is conserved after the laser pulse has subsided. Three large peaks develop in 
the electron density profile on the lower-energy side of the initial peak. The temperature 
~ B T  = 5.88 (Ryd=) (273 K) is too low for peaks to appear on the higher-energy side of 
the initial peak. The peaks at lower energy gradually overtake those at higher energies in 
size as the electrons give up energy to phonons with the progression of time. The energy 
separation between consecutive peaks is the U) phonon energy. The electron population 
eventually accumulates at small-momentum states. The hole populatioh on the other hand, 
does not show any prominent shucture because of the large effective mass. The polarization 
IPk(t)l rises near resonance (E = Eg + 24 (Rydcx) with the arrival of the pump pulse, and 
then decays smoothly after the pump pulse has passed. The pump pulse used here is too 
long for the phonon quantum beats to manifest itself. 

The electron migration to lower momentum is accompanied by the red shift of incoherent 
light emission. which is shown in figure 4 where the emission rate is plotted as a function of 
time for frequencies E,+24 Ryd'", Eg+ 16 RydU, E,+B Rydex, and Eg. The photon energy 
resolution is set to 8, = 4 Ryd''. The emission near the pump frequency rises rapidly on 
carrier excitation, reaching the peak value at about 0.8 (Ryde")-' after the arrival of the 
pulse. The emission at Eg + 24 Rydex then diminishes rapidly with time before huning to a 
slower rate of decrease at about 2.4 (RydcX)-l after the anival of the pulse. The emission 
at E, + 16 Rydcx decreases more slowly than that at Es + 24 Rydex. On the other hand, 
luminescence at E, and Eg + 8 b d e x  appears immediately on pulse excitation, and then 
continues to increase within the range of time calculated. This result compares well with 
the experimental result by Rota et a1 (1993). lhey compared their result to a Monte Carlo 
simulation where carrier scattering was treated classically as an instantaneous probabilistic 
process satisfying the energy conservation Ef = Ei f%j, with respect to the initial and final 
electron kinetic energy and the phonon frequency. The present calculation, on the other 
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Figure 3. V d o n  with time of electron (. . , , . .) and holc (- - -) population &er excitation 
by a laser pulse. The central pump laser frequency is Es + 24 Rydc", and the central phonon 
energy is 8.27 Rydcx. 

hand, is fully quantum mechanical, so that the energy conservation and uncertainty relation 
are automatically taken care of. 

There is a possibility that the HartresFrxk exchange field (the so-called electron-hole 
internal field) sustains itself without being driven by a coherent laser field if sufficient 
number of carriers are excited and the temperature is kept low. The possibility of 
excitonic condensation has long been discussed (see e.g. Halperin and Rice 1968). In 
ow approximation where the pump laser is treated as a classical field, the phenomenon is 
essentially the same as the emergence of an excitonic phase. The amplitude of the stationary 
solution of excitonic polarization 9 ( t )  G& t ,  t )  as a function of the external laser 
amplitude shows a hysteresis, and has a non-vanishing l i t  as the extemal laser amplitude 
tends to zero if the laser frequency is larger than the threshold for creating real excitons. 

In fact, Butov et al (1994) have recently observed an evidence of an excitonic 
condensation in photoluminescence broad-band noise in AlAslGaAs quantum wells. The 
actual process of the development of such a condensate is for the excited carriers to give 
up energy to phonons, excitons eventually accumulating at the lowest-energy state. The 
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time necessary for this Bose condensation to develop is estimated to be of the order of 
100 ps (Inoue and Hanamura 1976a), and could not be covered by our calculation within 
the machine time allocated. However, the spontaneous excitonic polarization must have a 
component that is coherent with the initial seed polarization produced by the laser pulse, so 
that such a development of Bose condensation must be detected in the off-diagonal element 
of the Keldysh function. 

Hoping to detect any such signs, we have solved the population dynamics with the 
phonon frequency reduced to 0.8 Rydex, with the phonon bandwidth 8~ = 0.4 Rydex. and 
with the phonon temperature T = 0 in order to simulate the energy loss to acoustic phonons. 
The electron-phonon coupling is taken to be y(0,O) = 3.0 x lo-' Rydex. Figure 5 compares 
the time evolution of electron population density in the momentum space for two values of 
the pump laser amplitude WO = 0.02 Rydea and WO = 0.20 Ryd'". The pump laser energy 
is centred round E*; the pulse envelope is taken to be a Gaussian function of band width 
8, = 1.0 Ryde* centred round tc = 2.0 (Rydcn)-l, 

- p ~ ( t )  = woexp(-iwt)exp[- (8p(t - t , ) } ' ] .  (48) 

The time separation between two consecutive lines is 0.67 (Rydm)-' in both figures. For 
the case of small laser amplitude WO = 0.02 Rydex, the carriers are first created at a wide 
range of momentum by the pulsed laser. Tbe population profile continues to evolve after 
the pump field has subsided, developing small bumps at larger momenta which then grow 
and move toward smaller values of k. It should be noted that the total number of electrons 
is conserved in this latter stage. This oscillatory evolution is largely due to the Coulomb 
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Figure 5. Tempod variation of electmn population in k-space for pulse laser amplitude (a) 
WO = 0.02 R y P  and (b) WO = 0.20 Ryd-. The time separation of two consecutive curves is 
0.671 (Rydu)-'. 

exchange interaction among the carriers, as is indeed verified by doing the same calculation 
without the Coulomb interaction or the phonon interaction. The carrier density accumulates 
with time near the origin of the k-space after giving up energy to the cold phonon system. 
The oscillatory behaviour is highly non-linear with respect to pulse intensity and pulse 
duration, so that we have not been able to identify the oscillation frequency with any 
particular energy scale. For the case of large laser amplitude WO = 0.2 Ryda, the electron 
population shows an even more complicated behaviour, again largely as a result of the 
Coulomb exchange interaction among the carriers. The carrier density develops a broad 
peak at small momentum, indicating a nearly semimetallic situation at large t .  (Notice the 
population is approaching unity near the origin.) 

In figure 6 we show the time evolution of the magnitude of polarization in the momentum 
space, in view of the interest in the quantity in fast-transient experiments such as four-wave 
mixing (see e.g. Schmitt-Rink et al 1991). All parameters are the same as in figure 5. After 
the laser pulse has passed, the general trend of the polarization is to diminish with time 
as caniers undergo phonon emissiodabsorption. The polarization also exhibits oscillatory 
behaviour nearly out of phase with that in figure 5. The behaviour is complex in contrast 
to the case of quantum phonon beat where the beat frequency is unambiguously identified 
with the phonon frequency (Tran Thoai and Haug 1993, Schilp et al 1994). For the case 
of WO = 0.2 Ryden, the polarization decay is noticable at small Ikl as the carrier population 
builds up there. Significant smctures remain in the region near the 'Fermi surface' where 
the occupation number is neither small nor large (i.e. approaches unity). 

The process of energy loss can be seen in the frequency-resolved emission rate of 
incoherent luminescence as shown in figure 7(a) for WO = 0.02 Rydex and in figure 7(b) for 
WO = 0.2 Ryd". The frequency resolution is taken to be a,, = 1.0 Rydm in both figures. 
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Figure 6. Temporal variation of the magnitude of electran-hole palarization in R-space for pulse 
laser amplitude (a) WO = 0.02 Rydcx and @) WQ = 0.20 Rydc'. The time separation of WO 
consecutive curves is 0.671 (Rydu)-'. 

For the case of smaller laser intensity, the incoherent luminescence rate oscillates with time 
with a frequency of about 7 (RydU)-'. The amplitude of this oscillation which is due to 
the Coulomb exchange interaction continues to grow even long after the pump laser pulse 
has subsided. The emission is strongest at around the frequency E, - 1.5 Rydcx. R e  shift 
in excitonic level is dependent on the electron-phonon coupling, and is attributed to the 
band energy renormalization. The effect of energy exchange with phonons is seen in the 
increase of emission rate of lower-frequency photons relative to that of photons near E,. 
although the emission peak shifts slightly towards the higher energy (see also figure 9(a)). 
The effect is more pronounced in the case of a stronger excitation WO = 0.2 Ryd". 

The frequency-resolved emission rate of coherent luminescence is shown in figure 8 for 
the case WO = 0.02 Ryd". Initially, the rate closely follows the pump laser profile, but then 
persists with oscillation long after the excitation. The oscillation is of opposite phase to that 
of the incoherent luminescence, as is expected from the Coulomb exchange model. Although 
it cannot be determined from the present result whether the coherent luminescence grows 
with time, the persistent polarization will provide the nucleus for excitonic condensation. 
Finally, figure 9 compares the frequency dependence of coherent and incoherent emission 
rate at oscillation peaks for the cases of WO = 0.02 Rydcx and WO = 0.2 Rydex. Since 
the coherent and incoherent emissions correspond to exciton condensate recombination and 
quasipdcle recombination, respectively, the increased difference in the peak frequency for 
WO = 0.2 Rydex should correspond to a larger excitonic gap. 

4. Concluding remarks 

We have performed a quantum mechanical population dynamics calculation for the case 
of carrier excitation in a two-band semiconductor by a short laser pulse. The Dyson 
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Figure 7. Frequency-resolved incoherent emission rates as functions of time, Pump pulse 
height, (a) WO = 0.02 Ryh', (b) WO = 0.20 RydL'. Photon energies, E& - 3.0 Rydcx 
(- . . -), E, - 2.5 Rydcx (- 1 -), E, - 2.0 Rydcx (- - -), Er - 1.5 Rydcx (- - -), 
E ,  - 1.0 Rydcx (-- --), EI - 0 5  R y P  (. , . . . .). and E, - 0.0 Ryd- (-), Fquency 
molution 8,  = 1.0 R y e x .  

equation is solved numerically, beating the two-point function as a matrix with time indices, 
thus avoiding making an a priori assumption as to the temporal behaviour of the Keldysh 
functions. The Coulomb interaction is treated in a HartreeFock approximation, while the 
electron-phonon interaction is tread up to the second order in the self-energy. The result 
for the temporal behaviour of luminescence intensity and red shift was in agreement with 
the experimental observation. The persistence of polarization function long after the pump 
light has subsided while the incoherent emission accumulates at lower energies at the same 
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time suggests the possibility of excitonic condensation. 
The population dynamics has long been studied using the classical master equation 

with only the transition probability being derived with quantum mechanics. It has been 
difficult, therefore, to study the coherent properties and fast transient phenomena such as 
exciton condensation and quantum beats. Now, a quantum mechanical treatment of the 
transient population dynamics is becoming practicable as a result of the recent development 
in parallel computing. The present calculation is one such attempt, but still involves a 
number of approximations which may not be fully justified but are necessitated by the 
computational limitations. The Coulomb interaction will have to be treated beyond the 
Hartree-Fock approximation, as has been suggested by Rota et al (1993) based on the 
experimental observation of fast carrier thermalization. A treatment of Coulomb scattering 
at very short times in random phase approximation has been given by El Sayed et al (1994) 
who found a non-exponential decay of polarization 

where r~ is the non-exponential decay time. This applies to extremely short times when 
the retarded Green functions have not yet evolved. Omission of such an effect leaves 
the present calculation still a long way from a direct comparison with experiment, while 
a random phase approximation calculation for a general time scale along the lines of the 
present calculation will involve too massive a computation. 

Coulomb scattering set aside, the second-order self-consistent treatment of the electron- 
phonon interaction in the self-energy diagram cannot be justified for a semiconductor in 
the same manner as for a metal. In materials such as CuCIz, excitons are known to form 
excitonic molecules which Bose condense first as the carrier concentration is increased (see 
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Figure 9. Frequency dependence of coherent (0) and incoherent (U) emission rate at various 
times for two values of laser amplifude WO. (a) WO = 0.02 Rydu, t = 8.6 ( R y d T '  (-), t = 
16.0 (Ryd'")-' (. . . . .) for coherent emission. t = 13.0 (Rydc")-' (-), t = 19.0 (Rydu)-' 
(. , . . . .) for incoherent emission. (b) WO = 0.20 (Rydcx)-'; t = 15.0 (Ryd')-'. Spline curves 
are a @de to the eye. 

e.g. Peyghambarian eta! 1983). A treatment of such a phase in the framework of Bogoliubov 
approximation will involve another set of order parameters to be solved simultaneously 
with the excitonic functions (see e.g. Inoue and Hanamura 1976b). An improvement 
on such points readily exhausts the computing capacity of any existing facility. Without 
such refinements, though, the numerical results presented here still have to be considered 
semiquantitative in confrontation with experimental data Despite such shortcomings, the 
authors nevertheless hope to have demonstrated the gowing feasibility of a realistic quantum 
mechanical treatment of such a complex problem as transient exciton population dynamics. 
When the computer capacity is futher increased, a more fundamental improvement may 
become feasible, e.g. solving the equations simultaneously also for four-point and higher- 
order functions, thereby relaxing the necessity of introducing decomposition assumptions 
such as the mean-field approximation. 
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